
©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

	

	

	

	

	

	

	

	

	

	

Delivering Complex Software Projects in
large organisations.

A pragmatic approach to Project Management for large scale software projects.

Written by Mario De’Cristofano

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

	

	

Disclaimer	

Unless	otherwise	stated,	the	article	below	is	written	originally	&	in	full	by	the	author	&	remains	the	
property	of	the	author.	All	referenced	&	third-party	content	is	linked	with	appropriate	credit	given	
where	applicable.	For	questions	about	this	article	or	its	content,	please	contact	the	author	at	
mariodecristofano@googlemail.com		 	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

Contents	
	

1.	 Why	this	paper?	...	4	

2.	 The	Scenario	...	4	

3.	 The	Background	..	4	

4.	 Core	problems	..	6	

5.	 Current	state	of	play	...	6	

6.	 Cultural	&	business	expectations	...	6	

7.	 So	what	to	do	next.	..	7	

6.1	Set	the	team	up,	...	7	

6.2	Structure	the	people,	...	8	

6.3	Create	infrastructure	first	...	8	

6.4	Build	&	code	...	9	

6.4.1	Pass	the	Baton	(in	the	right	order)	..	9	

6.5	Despite	point	3	(products),	...	10	

6.6	Content.	..	10	

6.7	Testing	..	10	

8.	 Tools	of	the	Trade	..	12	

7.1	Software	Tracking	...	12	

7.2	Testing	..	12	

7.3	Project	Management	..	12	

9.	 Finally,	a	note	on	Project	Management.	..	12	

	

	 	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

	

1. Why	this	paper?	

I’ve	been	involved	in	a	lot	of	web	projects	whereby	some	of	which	have	been	on	a	considerably	
large	scale.	When	I’m	faced	with	new	challenges,	I	like	to	write	my	experiences	down	in	a	more	
structured	way	than	a	regular	blog	post.	This	is	one	such	example.	You	should	note	whilst	the	
project	is	recent,	it’s	been	entirely	desensitized	to	protect	client	privacy.	The	papers	structured	
into	the	background,	the	problem	and	my	recommendations.	Some	of	the	topics	aren’t	deep	and	
aren’t	meant	to	be,	they	are	subject	to	follow	up	blog	posts	or	outside	the	scope	of	the	nature	of	
this	paper.	If	you	have	questions	or	comments,	please	get	in	touch	with	me	directly.	Issues	with	
any	of	the	content,	email	me	on	the	address	above.	

	

2. The	Scenario	
	

The	scenario	for	this	whitepaper	
covers	a	complex	IT	landscape	
amongst	a	transforming	business	
in	a	non-technology	1st	sector.	
An	old-fashioned	company	
culture	then,	with	somewhat	out	
of	date	opinions	&	lack	of	
direction	are	embedded	into	the	DNA	of	an	extremely	complex	environment,	that	of	‘doing	what	
we	always	do’	and	‘change	is	tough’	type	of	mentality	rules.	Business	size	is	in	the	billions	of	
dollars.	Both	an	extensive	bricks	&	mortar	network	along	with	some	online	capability	exists	in	
multi-regions	throughout	the	world	&	the	business	is	looking	to	compete	aggressively	in	the	UK	
market	with	a	couple	of	direct	competitors	with	an	e-commerce	solution	to	ship	product	in	a	B2B	
wholesale	vertical.	

3. The	Background	
The	business	runs	its	centralised	ERP,	Infor’s	M3	with	the	SAP	Hybris	e-commerce	platform	
serving	its	website	plugged	in	straight	over	the	top.		Situated	in	between	are	two	middleware	
layers,	IBM’s	TIBCO	and	an	iterative	proprietary	web	services	layer	(referred	to	by	the	authors	
name)	which	governs	communication	to	various	third	parties	including	PIM’s,	invoicing	&	supply	
chain	management	tools	&	receipt	and	delivery	note	generation,	electronic	document	
interchange	(EDI)	and	other	such	services	&	workflows.	

The	UK	part	of	the	global	business	has	its	own	unique	UK	market	requirements	in	terms	of	
feature	need.	Thusly	these	have	been	developed	by	both	UK	in-house	teams	&	outsourced	
software	teams	as	standalone	code	features,	webservices	and	code	adjustments,	to	be	then	
retro-bolted	into	the	company	group-wide	software	solution.	This	solution	sits	in	a	global	data	
centre	and	is	deployed	to,	in	true	agile	fashion	-	every	fortnight	(or	so)	with	a	new	codebase	
containing	core	features	for	the	overall	solution	used	by	multiple	territories.	Further	this	code	
base	is	often	updated	daily	with	minor	changes	as	matter	of	routine.	As	both	the	overall	solution	
and	UK	specific	features	are	developed	out	of	sync	and	independently	by	different	teams	rarely	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

when	merged	does	this	solution	work	correctly.	Think	both	Agile	&	Waterfall	being	melded	
together	(see	later	in	this	document)	badly.	We’ll	call	this	methodology	‘(F)ragile’	

The	environment	is	a	mixture	of	UK	&	European	tier	1-3	data	centres	hosting	production	and	
‘pre-prod’	(the	universal	term	the	company	uses	for	anything	not	production	or	live)	
environments	sitting	on	a	few	years	old	and	a	few	licenses	back	(for	cost	reasons)	Windows	
estates,	(x86)	with	AWS	(I	presume	Puppet	maybe)	self-deploy	and	cloudfront	(AWS)	to	
distribute	content	via	a	CDN.		Hybris	in	one	data	centre,	M3	in	another,	alongside	the	TIBCO	
middleware.			

	

	

Further,	and	in	terms	of	testing,	this	is	often	done	in	the	same	environment	that	development	
occurs	on	(assumed	for	cost,	simplicity	and	legacy	purposes	they	don’t	have	a	structured	
Sandbox	>	Development	>	UAT	enviro)	meaning	a	constantly	changing	core	environment	impacts	
the	ability	to	conduct	effective	end	to	end	testing	in	any	such	case.	Automated	testing	rarely	
works	because	on-page	elements	constantly	change	or	features	are	switched	on	and	off	to	a	
constantly	rolling	timetable,	meaning	effective	testing	is	difficult.	Local	network	restrictions	
throughout	the	group	mean	even	web	developers	&	coders	can’t	see	on-page	rendering	
accurately	because	everything	from	JS	to	other	web	based	scripts	are	all	blocked	making	visual	
testing	next	to	impossible.	

Finally,	the	overall	solution	is	developed	by	a	giant	3rd	party	vendor	in	a	‘perfect’	non-real-world	
environment	with	a	subsequent	perfect	M3	install	nothing	like	the	working	environment.	Often,	
when	that	code	is	signed	off	and	deployed	to	the	actual	real-world	M3	environment	issues	
occur,	which	highlight	an	issue	with	the	current	production	environment	&	the	sanity	of	the	data	
within.	Or	so	I	believe!	

The	UK	development	facility	is	somewhat	entrenched	with	both	a	jaded	fatalistic	attitude	and	a	
lack	of	internal	governance	means	procedures	are	unmanaged	&	out	of	control.	Code	is	
developed	straight	in	Visio	Studio,	compiled	on	the	fly	and	uploaded	via	FTP.	No	version	control,	
no	centralised	repository	and	high	risk	of	code	overwrites	each	and	every	day.	

As	this	project	has	several	components,	the	delivery	of	a	content	management	system	driven	
website	to	sell	products	being	one	of	them,	the	whole	web	development	cycle	also	needs	to	be	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

followed	(at	the	same	time	via	an	offshore	team),	through	wireframing,	prototyping,	UX	and	UI	
consideration	to	actual	design,	page	template	build,	device,	regression	&	usability	testing.	This	is	
happening	(in	various	degrees	of	competence)	simultaneously	inline	with	the	overall	code	build	
with	an	effort	to	marry	the	two	later	down	the	line.	M3	and	supply	chain/logistics	being	seen	as	
a	separate	collective	workstream	to	front	end	website,	static	content	&	marketing	&	SEO.	

4. Core	problems	
Like	any	business	going	through	transformation,	change	is	tough.	A	mixture	of	cultures	&	
generational	expectation,	language	gaps,	skills	and	experience	disparity,	political	complexities	
along	with	market	strains	such	as	digitally	savvy	competitors	all	piles	the	pressure	on.	Further,	
pressure	changes	people’s	behaviour,	and	collective	culture	breeds	similar	behaviour	to	cultivate	
a	hot	bed	of	bad	practice	&	poor	behaviour.	You	have	here	then	a	perfect	environment	to	fail.		

Leaders	squabble	as	everyone	grabs	land,	trying	their	best	to	both	protect	their	position	and	
attack	others	if	it	means	getting	ahead.	This	poison	is	rife	and	in	part	due	to	the	lack	of	direct	
leadership	from	the	top.	

A	point	to	note	is	the	spectacularly	bad	blending	of	both	agile	methodology	used	by	the	overall	
group,	for	software	development,	and	the	waterfall	six	sigma	style	approach	of	the	UK	business.	
Melding	of	the	two	is	akin	to	trying	to	graft	a	pig’s	ear	onto	a	horse.		

5. Current	state	of	play	
A	UK	market	version	of	the	product	is	due	to	be	released	imminently	with	people	drafted	in	to	
facilitate	that	delivery,	however	is	in	no	way	near	to	time	or	budget.	Resources	are	burned	
through,	being	ejected	at	the	other	side	like	a	hot	spent	shotgun	cartridge.	Morale	and	the	
health	&	wellbeing	of	those	involved	is	at	an	all-time	low	with	very	little	in	the	way	of	
authorative	decision	making	capability	from	any	one	in	a	leadership	position.	Not	entirely	their	
fault,	complexities	of	multi-headed	management	breeds	unmanageable	complexity	and	a	risk	
appetite	of	the	people	in	charge	of	the	strategy	along	with	realising	that	strategy	vs	how	the	
business	(as	a	large	beast)	works	I	don’t	believe	are	in	tune.	Project	perspective	is	also	often	lost	
in	translation	as	generally	the	project	is	relatively	low	risk/impact	commercially	speaking,	but	
very	high	noise	throughout	the	organisation.	That	very	noise	impacts	the	project	massively	and	
how	people	behave	within	it.	PR	is	needed,	the	project	has	very	bad	PR	ongoing.	

6. Cultural	&	business	expectations	
The	culture	appears	to	be	that	of	‘get	it	done’	and	‘compete	as	soon	as	possible	with	the	
immediate	competitor’	along	with	the	favourite	old	‘we	need	to	be	digital’	line,	but	with	no	real	
investment	into	doing	things	at	reasonable	time	scales	or	to	best	practice.	Some	say	the	result	is	
more	important	than	how	we	get	there	and	rumours	such	as	performance	related	bonuses	and	
back	room	agreements	are	all	quipped	around	various	members	of	the	team	into	the	why	we	
are	in	this	position.	Mostly	though,	quick	decisions	with	lack	of	detail	up	front	is	now	burning	the	
organisation	as	considerable	flaws	in	the	plan	(or	as	I	like	to	call	dead	bodies)	appear	with	
alarming	frequency.	The	business	doesn’t	have	the	long	sight	at	the	minute	to	consider	using	
OPEX	capital	to	plan	(a	bit	like	the	lazy	squirrel	story	–	one	spends	the	summer	gathering	nuts	for	
the	winter	only	for	the	other	lazier	squirrel	to	go	hungry	through	lack	of	longer	term	preparation)	
instead	choosing	to	move	down	a	path	of	what	is	the	most	resistance,	using	the	excuse	that	
‘change	is	tough’	and	‘if	we	don’t	do	it	now	we	never	will’.	Even	at	the	n’th	hour,	the	business	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

continues	to	pour	resource	&	hemourage	cash	into	a	project	almost	seemingly	destined	to	fail.	
Quasi	inter-country	battles	over	who	should	be	responsible	for	delivering	the	solution	also	rings	
loud,	in	particular	cultural	sensitivities	between	both	the	French	&	the	English	are	genuine	
problems	in	this	project.	Foreign	language	exchange	is	poor,	the	French	off-shored	against	the	
Americans,	off-shored	against	the	English,	off-shored	against	the	Indians…off-shored	
against….you	get	the	picture.	Again	however,	the	size	of	the	project	and	its	relatively	low	
risk/impact	are	often	missed	and/or	mis-communicated.	Generally	communication	is	bad.	

7. So	what	to	do	next.		

	

Stop.	Stop	with	the	braking	force	of	Lewis	Hamilton	smashing	his	Apline	stars	covered	foot	into	
his	anodised	aluminium	pedal	of	the	Mclaren	MP1	going	from	200mph	to	0.	(congratulations	on	
the	GP	championship	by	the	way	Lewis!)	Take	stock.	Breath.	Understand	cultural	and	political	
divides	needs	to	be	strengthened,	build	bridges.	Ignore	those	issues	at	your	peril.	Communicate.	
Communicate	more.	What	are	we	trying	to	achieve?	Recognize	we	are	not	experts	in	this	field	
but	there	are	experts	in	the	business.	Utilise	them.	Give	them	autonomy	and	build	a	team	with	
the	right	people	in	the	right	roles	with	the	right	levels	of	autonomy	to	get	stuff	done.	Set	up	a	
skunkworks.	Protect	the	business	from	its	new	digital	requirement	(for	now)	and	build	in	a	silo	
to	free	up	time	to	breath,	play	and	learn.	Ultimately	the	ability	to	make	mistakes	at	this	stage	is	
important	as	there’s	no	other	opportunity	to	do	so.	Use	the	existing	project	as	a	case	study.	
Learn	from	it.	Invest	in	internal	auditing,	invest	in	external	auditing.	Benchmark	your	workflow.	

My	plan	falls	into	several	distinct	parts;	

6.1	Set	the	team	up,	communicating	the	mission	and	the	requirements.	Set	up	a	decent	
PMO	facility	with	structured	governance,	and	ensure	minimum	documentation	is	created	
(regardless	of	the	agile	world	we	like	to	convince	ourselves	we	work	in)	so	that’s	SOWs,	
Functional	&	Technical	spec’s,	wireframes,	the	whole	nine	yards	are	all	completed	BEFORE	
work	starts.	Get	both	internal	&	external	auditing	in	place.	Always	sensible	for	a	public	
company	with	shareholders	to	feed.	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

	
6.2	Structure	the	people,	the	right	people	in	the	right	roles	with	a	single	leadership	from	
the	top.	Remove	dead	wood,	political	fighters	and	those	who	are	incompetent.	One	person.	
In	charge.	Buck	stops	with	them.	Ring	fence	this	team,	make	it	a	skunkworks.	At	this	scale,	
this	will	help.	Silo	it.	Protect	the	business,	protect	the	people,	take	the	pressure	off.	Use	a	
properly	blended	agile	methodology	for	day	to	day	software	deployment	(see	fig1)	but	
waterfall/Six	Sigma	toll	gate	for	the	business	communication	as	that	what	the	big	business	
craves.	Weekly	calls,	minimum	decision-making	stakeholders	from	each	section	of	the	entire	
business,	follow	up	notes,	recorded	minutes.	Quartley	summits	and	monthly	town	hall	
communications	tracking	progress	to	plan.	Everyone	participates.	No	option	to	duck	out.	No	
option	to	pass	the	buck.	Small	teams.	No	excuses.	
	

	
	

6.3	Create	infrastructure	first	ready	to	accommodate	two	versions	of	the	group	
software.	If	we	already	know	every	two	weeks	a	code	drop	will	change	the	overall	core	code	
base,	let’s	encompass	that	in	one	environment,	(we	can	call	it	UK1)	and	let’s	have	a	UK	
centric	version	which	contains	the	latest	version	of	the	group	software	but	doesn’t	receive	
the	ongoing	two	weekly	updates,	and	we’ll	call	that	UK2.	UK1	continues	to	receive	the	code	
releases,	these	are	managed,	tested	&	the	agile	process	interfaces	with	the	way	the	group	
want	to	work	without	an	issue.	Use	GIT,	a	private	centralised	Repo,	or	get	everyone	working	
in	Visual	Studio	with	TFS	–	whatever	the	workflow,	use	Version	control	&	proper	collab.	
Tools	such	as	Basecamp.	Enforce	it.	Audit	it.		

	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

	
	
6.4	Build	&	code	the	UK	centric	features	on	UK2,	with	each	feature	being	a	micro-project	
on	it’s	own.	Don’t	run	them	side	by	side,	run	them	waterfall	to	ease	pressure	on	the	team.	
Simultaneously	whilst	this	technical	workstream	is	happening,	ensure	the	entire	supply	
chain,	logistics	and	internal	operational	processes	are	all	fully	mapped,	understood	&	with	
any	touch	points	audited.	Change	the	processes	or	modify	them	ready	to	accept	the	digital	
product	at	this	point.	Horse	first,	Cart	after,	like	it	should	be.	
	

6.4.1	Pass	the	Baton	(in	the	right	order)	

One	of	the	biggest	issues	in	complex	software	development	is	the	issues	around	managing	
multiple	groups	of	people	all	working	on	the	same	engine	but	in	different	parts.	For	
simplicity,	we’ll	use	a	car	analogy,	one	team	working	on	the	air	conditioning	system,	one	
team	working	on	the	electronics	and	one	team	rebuilding	the	piston	chambers.	All	key	to	the	
engine	actually	working,	but	all	very	different	teams.	Assuming	there’s	a	natural	order	to	
this,	so	electronics	mean	diddly	squat	if	the	piston	chambers	aren’t	built,	then	you	assume	
do	that	first,	before	you	call	the	team	in	to	work	on	the	electronics.	Same	with	software	
development,	ensure	the	group	deployment	is	fully	communicated	&	tested,	before	the	
baton	is	passed	to	the	UK	team	to	code	individual	features.	Sounds	simple,	but	missing	this	
clear	communication	really	impacts	multiple	development	streams.	So	I’d	want	to	facilitate	
this	multi-party	development	work	using	something	like	a	perm.	Google	Hang	Out,	Slack	
Channel	or	a	Skype	channel	set	up.	People	can	dip	in	and	out,	but	the	overall	narrative	is	all	
captured	in	one	channel.		

	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

You	know	who	get	this	large	scale	collaboration	over	a	complex	solution	right?	F1	teams.	See	
how	they	do	things.	Even	better,	get	people	with	experience	working	in	teams	like	that.	I	
know	people.	You	know	people.	Make	it	work.		
	
6.5	Despite	point	3	(products),	assuming	an	e-commerce	project	involves	selling	stuff,	
get	your	product	catalogue	ready	at	this	point	–	the	one	thing	you	can	do	simultaneously	
whilst	developing	features	as	it’s	somewhat	standalone	and	non-reliant.	Using	a	PIM?	Now’s	
the	time	to	populate	it.	Product	categories,	descriptions,	photographs.	Get	that	done.	This	is	
a	milestone.	We	don’t	progress	until	your	products	are	ready.	Make	no	mistakes	on	this	
simple	work	stream,	photographs	&	such	like	are	all	easy	quick	wins	to	do	properly,	go	&	get	
them	done,	and	get	that	work	completed	right,	1st	time.	
	
6.6	Content.	Write	it,	author	it,	proof	it,	sign	it	off.	This	step	falls	into	general	web	design	
(&	you	can	read	here	about	that).	Get	your	prototyping	complete,	make	your	page	
templates	work,	build	your	content	and	get	it	all	ready	to	be	populated.	This	is	a	milestone.	
Map	the	site	structure.	Document	it.		
	
6.7	Testing	–	Build	your	testing	environment.	Get	native	devices,	don’t	rely	on	emulation.	
Like	making	your	own	network	cables,	it’s	a	false	economy.	Get	a	sandbox	environment.	Get	
a	UAT	environment.	Stabilise	and	harden	it,	and	back	it	up.	Get	your	individual	features	
tested.	Unit,	functional	and	regression.	Then	automate	them.	Each	feature,	deploy	it	as	a	
standalone	feature	into	the	last	version	of	the	group	software.	Test	it	again.	If	it	breaks,	rinse	
repeat	(but	you’ve	not	broken	your	core	environment	and	you	also	know	where	the	problem	
lies.	i.e	–	the	last	UK	feature).	Do	this	with	each	feature.	Time	intensive,	but	saves	time	later	
down	the	line.	No	one	likes	mixing	a	bunch	of	code	bases	developed	by	different	people	and	
then	picking	apart	what	caused	the	issue.	Simplify	the	process.	This	process	is	also	greased	
well	by	passing	the	baton	(see	6.1).	
	
At	this	point	you	have	all	your	web	features	developed	and	now	is	the	time	to	start	writing	
any	interfaces	with	third	parties,	web	services	and	re	factoring	anything	which	needs	it,	to	
work	with	those	web	services.	Document	those	services,	calls	and	structures.	Now’s	the	time	
for	SIT	testing,	more	regression	testing	and	as	a	milestone,	you	want	to	finish	here	with	a	
working	solution	for	the	UK	on	UK2,	encompassing	the	last	weekly	update	from	the	group	
deployments	plus	all	your	webservices	integrated	&	documented.	You	can	choose	at	this	
point	to	deprecate	UK1,	or	move	the	contents	of	UK2	(your	success	platform)	to	UK1	and	
keep	them	mirrored	for	redundancy	prior	to	deployment.	At	this	point,	both	UK1	and	UK2	
now	receive	the	two	weekly	core	code	updates	and	the	UK	specific	features	all	work	and	
behave	well.	
	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

	
	
DOCUMENT	YOUR	CODE.	Enforce	it.	All	code,	documented.	Subroutines,	APIs,	everything.	If	
there	isn’t	comments,	it	gets	bounced	back	to	the	developer	&	revisioned.	Do	NOT	skip	this	
step.	The	code	needs	to	live	on	beyond	the	individual.	Especially	important	when	dealing	
with	segmented	code	from	third	parties.		
	
The	next	micro	project	is	payment	gateway	integration.	This	can	always	be	done	
standalone.	Pick	your	gateway,	(there’s	not	that	many	globally),	define	your	rules	and	
integrate	it.	Anything	which	breaks	now,	it’s	the	payment	gateway,	you	know	this	because	
everything	else	was	working	up	until	this	point.	Fix	it	on	UK2,	you	now	have	UK1	as	a	recent	
backup	continuing	to	take	two	weekly	deployments,	and	you	can	roll	back	to	that	until	you	
get	things	right.		
	
Test	with	the	business.	Test	each	operational	area	with	the	now	barebones	of	the	site	which	
should	have	been	plugged	in.	Page	templates	populated	and	UX	and	UI	signed	off.	Now	you	
can	start	doing	closed	user	group	working	groups.	Testing	the	UI,	testing	on	mobile	devices,	
seeing	how	the	product	interacts	with	the	business.	Tweaking	the	process	here,	there	until	
everything	works.	You’re	now	working	at	the	visual	layer,	so	CSS,	layout	&	UI	changes	are	
possible	and	can	be	done	cleanly	without	impacting	the	core	code	base.	
	
Plan	your	phased	BETA	approach.	Select	your	project	champions.	Sort	out	your	project	
comms	to	the	entire	group.	Deploy	as	a	BETA,	for	X	period	of	time.	This	is	a	topic	all	on	its	
own	so	I	won’t	speak	more	on	this	here.		
	

The	overall	process	for	this	particular	scenario	is	above.	It’s	designed	not	to	be	super-lean,	
(although	it	is	structured)	but	it’s	designed	to	allow	for	error	and	allow	that	error	to	be	easily	
tracked	in	a	large	complex	organisation,	just	like	how	F1	teams	work.	Software	is	released	in	
a	structured	narrow	way,	with	certain	aspects	not	tackled	until	others	have	been	addressed.	
You	can’t	have	a	baby	in	a	month	by	throwing	nine	women	at	the	task	&	it’s	the	same	with	
this	type	of	project.		

	

Here's	some	summary	do’s	&	don’ts;	

Don’ts’s	

• Don’t	develop	too	many	complex	features	simultaneously	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

• Don’t	be	defensive,	work	together	collectively	and	use	Agile	to	work	quickly	through	
software	development	tasks	

• Don’t	ignore	issues	and	short	term	plan.	

Do’s	

• Deal	with	language	&	geographical	barriers	from	the	outset	
• Plan	for	long	term	success	by	doing	time	intensive	tasks	correctly	to	start	with.	
• Define	your	acronyms	and	language,	and	stick	to	it	consistently	
• Get	auditing	in	place	both	internally	&	externally.	

Software	product	launches	are	fairly	straight	forward	and	again	out	of	scope	of	this	whitepaper,	
but	let’s	talk	briefly	about	tools	for	a	project	this	size.		

8. Tools	of	the	Trade	
	

7.1	Software	Tracking	

JIRA,	no	other	choice	really.	Works	well.	I’d	arguably	also	run	it	with	Microsoft	Team	Foundation	
Server	utilising	the	code	release	&	feature	management	tools.	In	fact,	Team	Foundation	server	is	
a	must	in	any	.Net	project	at	this	scale	considering	its	tight	link	to	Visual	Studio.		

7.2	Testing	

Webload,	Selenium	with	Cucumber,	Loader.io,	Soap.ui	all	good	for	testing,	stick	with	a	number	
of	these	and	you’ll	be	golden.		

7.3	Project	Management	

With	Microsoft	Project	being	the	forerunner,	tie	that	up	with	Basecamp.	Great	tool	for	Comms	
and	with	independent	access	it’s	great	for	working	with	third	parties	&	covers	all	work	streams.	
Use	Trello	day	to	day	for	stand	ups	and	task	summary	management.	You	can	read	about	tools	a	
little	bit	more	in	my	other	white	paper	here	and	also,	if	you	want	to	learn	how	to	use	MS	Project,	
read	my	guide	here.	

9. Finally,	a	note	on	Project	Management.		

You’ll	need	a	bloody	good	orchestrator	for	this	symphony	so	don’t	skimp	on	Project	Managers.	
Good	ones,	those	who	know	software	&	are	comfortable	ball’s	deep	at	the	busy	end	of	
deployments.	Make	them	‘people’	people,	this	project	(like	all	technology	projects)	are	more	
about	people	than	the	technology,	so	get	that	right.	Strong	planning	&	documentation	along	
with	governance	and	process	should	all	be	followed.	Following	the	process	will	help	stop	the	
project	from	getting	out	of	shape.	You	can	either	skimp	on	process	if	you	have	people	who	can	
work	together	well	amidst	chaos,	or	skimp	on	people	if	the	process	and	documentation	is	robust	
&	appropriate.	You	can’t	skimp	on	both.	

Get	a	lead	PM	or	Programme	lead,	with	sub	PM’s	managing	the	various	work	streams.	Make	
them	web-disciplined	with	several	years	of	ideally	hands-on	experience.	That	means	the	Digital	
PM	for	the	content	has	actually	built	content,	the	Digital	PM	for	the	code	base	has	actually	
coded,	spend	time	up	front	finding	these	people	or	calculate	the	net	loss	of	every	month	you’re	
delayed	through	incompetence.	Then	make	the	call.		Good	luck	with	the	shareholders!	

©	2017	Mario	De’Cristofano	–	All	Rights	Reserved	
	

You	can	read	about	my	Project	Management	manifesto	here,	and	what	to	do	if	you’re	implanted	
into	this	type	of	project	half	way	through	here	and	if	you’d	like	to	get	in	touch	please	do.	Looking	
for	a	Project	Manager,	I	know	a	few.	Maybe	I	can	help.	

@mariodc	on	Twitter	–	grumpy,	sweary	&	always	ready	to	have	an	opinion.	

	

External	Links	

How	to	plan	Large	scale	Technology	Projects	on	Time	&	on	budget	–	McKinsey	

https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/delivering-large-
scale-it-projects-on-time-on-budget-and-on-value	

Why	your	next	large	software	project	needs	to	start	with	change	management	

http://www.ellucian.com/emea-ap/Blog/Why-Your-Next-Software-Deployment-Needs-to-Start-
With-Change-Management/	

Agile	Software	Delivery	Methodology	of	Large-Scale	Software	Projects	

https://pdfs.semanticscholar.org/ea63/55028d31f3842affaf80b9274c4f53f5bab4.pdf	

How	to	Document	a	large	software	project	

https://www.smartics.eu/confluence/display/PDAC1/How+to+document+a+Software+Develop
ment+Project	

	

	

	

	

